Distance-from-the-wall scaling of turbulent motions in wall-bounded flows
R. Baidya, J. Philip, N. Hutchins, J. P. Monty, and |. Marusic

Citation: Physics of Fluids 29, 020712 (2017); doi: 10.1063/1.4974354
View online: http://dx.doi.org/10.1063/1.4974354

View Table of Contents: http://aip.scitation.org/toc/phf/29/2

Published by the American Institute of Physics

Articles you may be interested in

On the topology of wall turbulence in physical space
Physics of Fluids 29, 020713 (2017); 10.1063/1.4974513

Lumley decomposition of turbulent boundary layer at high Reynolds numbers
Physics of Fluids 29, 020707 (2017); 10.1063/1.4974746

A few thoughts on proper orthogonal decomposition in turbulence
Physics of Fluids 29, 020709 (2017); 10.1063/1.4974330

Small scale turbulence and the finite Reynolds number effect
Physics of Fluids 29, 020715 (2017); 10.1063/1.4974323

The logarithmic and power law behaviors of the accelerating, turbulent thermal boundary layer
Physics of Fluids 29, 020718 (2017); 10.1063/1.4974900

Preface to Special Topic: A Tribute to John Lumley
Physics of Fluids 29, 020501 (2017); 10.1063/1.4976616



http://oasc12039.247realmedia.com/RealMedia/ads/click_lx.ads/www.aip.org/pt/adcenter/pdfcover_test/L-37/139806795/x01/AIP-PT/PoP_ArticleDL_051717/PTBG_orange_1640x440.jpg/434f71374e315a556e61414141774c75?x
http://aip.scitation.org/author/Baidya%2C+R
http://aip.scitation.org/author/Philip%2C+J
http://aip.scitation.org/author/Hutchins%2C+N
http://aip.scitation.org/author/Monty%2C+J+P
http://aip.scitation.org/author/Marusic%2C+I
/loi/phf
http://dx.doi.org/10.1063/1.4974354
http://aip.scitation.org/toc/phf/29/2
http://aip.scitation.org/publisher/
http://aip.scitation.org/doi/abs/10.1063/1.4974513
http://aip.scitation.org/doi/abs/10.1063/1.4974746
http://aip.scitation.org/doi/abs/10.1063/1.4974330
http://aip.scitation.org/doi/abs/10.1063/1.4974323
http://aip.scitation.org/doi/abs/10.1063/1.4974900
http://aip.scitation.org/doi/abs/10.1063/1.4976616

PHYSICS OF FLUIDS 29, 020712 (2017)

Distance-from-the-wall scaling of turbulent motions in wall-bounded flows
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An assessment of self-similarity in the inertial sublayer is presented by considering the wall-normal
velocity, in addition to the streamwise velocity component. The novelty of the current work lies in
the inclusion of the second velocity component, made possible by carefully conducted subminiature
X-probe experiments to minimise the errors in measuring the wall-normal velocity. We show that
not all turbulent stress quantities approach the self-similar asymptotic state at an equal rate as the
Reynolds number is increased, with the Reynolds shear stress approaching faster than the streamwise
normal stress. These trends are explained by the contributions from attached eddies. Furthermore,
the Reynolds shear stress cospectra, through its scaling with the distance from the wall, are used to
assess the wall-normal limits where self-similarity applies within the wall-bounded flow. The results
are found to be consistent with the recent prediction from the work of Wei et al. [“Properties of
the mean momentum balance in turbulent boundary layer, pipe and channel flows,” J. Fluid Mech.
522,303-327 (2005)], Klewicki [“Reynolds number dependence, scaling, and dynamics of turbulent
boundary layers,” J. Fluids Eng. 132, 094001 (2010)], and others that the self-similar region starts
and ends at z* ~ O(V5*) and O(5"), respectively. Below the self-similar region, empirical evidence
suggests that eddies responsible for turbulent stresses begin to exhibit distance-from-the-wall scaling
at a fixed z* location; however, they are distorted by viscous forces, which remain a leading order
contribution in the mean momentum balance in the region z* < O(V6+), and thus result in a departure

from self-similarity. Published by AIP Publishing. [http://dx.doi.org/10.1063/1.4974354]

I. INTRODUCTION

A large amount of effort has been invested in under-
standing wall-bounded turbulent flows, primarily due to its
importance in many applications. One of the challenges asso-
ciated with the study of wall turbulence is that it contains a
range of length scales. The smallest scale corresponds to the
viscous length scale, v/U,, where v and U, are the kinematic
viscosity and friction velocity (UT =v/(0U/dz) ‘TO). Here,
U and 7 are the streamwise mean velocity and wall-normal dis-
tance with origin at the wall, respectively, and we shall use x
and y for the streamwise and spanwise directions. The largest
scale is typically taken to be the turbulent boundary layer thick-
ness &, or the centreline height for pipe and channel flows.?
Another possible choice for a length scale is z—the distance
from the wall.*>

Turbulent motions are usually expected to scale with one
of these three length scales (v/U:, z, 6) or with the homo-
geneous turbulence length scales (Kolmogorov length scale
and Taylor microscale), or a combination of these. To make
the notion of turbulent length scales more precise, it is usual
to consider the streamwise spectra ¢;;(ky, z) of the velocity
components at different wall-normal location, where k, is
the streamwise wavenumber and i, j = 1,2,3 or u,v,w. In
this paper, we shall specifically consider the spectra of u, w
velocities and the cospectra of Reynolds shear stress (¢,
Dww, Guw). It should be noted that the integral of ¢, Oy,
and ¢,,, over k, results in the turbulent stresses u2, w?, and
uw, respectively. Here, capitalisation and overline denote time

averaging. In contrast to the multitude of available length
scales, for velocity scale, U, alone characterises the velocity of
the turbulent motions, and + denotes the scaling of velocities
with U;.

The situation is indeed complicated if we want to under-
stand the scaling of ¢;;(ky, z) with respect to the various length
scales over the full range of k, and z. However, if we con-
centrate on arguably the most important wall-normal region
in the boundary layer, the inertial sublayer (also known as the
logarithmic layer), and the energy containing motions, the sit-
uation simplifies, since the effects of viscosity are negligible.
Consequently, the viscous length scale (v/U;) does not fea-
ture in the dynamics, while the homogeneous length scales
(Kolmogorov length scale and Taylor microscale) are found
to be relevant only for the fine-scale motion with negligible
contribution to the overall turbulent stresses. Hence, the dom-
inant length scales in these cases are z and ¢ (some evidence
for this will be given in Sec. III). The scaling of turbulent
motions with z has been employed in a number of differ-
ent ways (e.g., attached eddy hypothesis,>® vortex clusters,’
and the Lg hierarchy®), and collectively we refer to them as
the distance-from-the-wall scaling. We note that the inertial
sublayer corresponds to a region that is sufficiently far away
both from the wall and the edge of the boundary layer or the
centreline in internal flows.

Most attention has been paid to u-motions primarily
because of its ease in measurement, where Perry, Henbest,
and Chong” show that there are two regions in wavenumber
space for ¢,,,, with one scaling with z and the other with §, and
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TABLE I. Experimental parameters for X-probe measurements.

X Us v/U; U, S

m)  (ms)  Rer (@m)  (ms™h  (m) At TUL/S IF 1T Ay
2 15.2 2600 28 0.569 0.071 0.513 18000 14 14 7
7 15.2 5100 30 0.526 0.153 0.436 19000 13 13 7
18 14.8 10600 32 0.484 0.338 0.377 18000 12 12 6

in-between them the overlap region displaying a k! spectrum.
It is interesting to note that there has been a large effort in
searching for the k; ! region, and this has proven to be mostly
elusive, mainly because of the need for high Reynolds numbers
(Re) coupled with the simultaneous need to make measure-
ments in the inertial sublayer (which physically gets very
close to the wall with increasing Re). In addition, as Davidson,
Nickels, and Krogstad'® mention, the k; ! behaviour in the one
dimensional spectra is likely contaminated by aliasing from
three dimensional effects. Therefore, the u-motions show a
mixed scaling in z and ¢ rather than a pure distance-from-the-
wall scaling. In contrast, the w motions do not scale with ¢,
and in this paper we will show that the w and uw-motions
exhibit collapse in the distance-from-the-wall (or z-) scaling
more readily compared to the u motions. Furthermore, we shall
also provide a phenomenological explanation for the mixed
scaling of ¢,, and the pure z-scaling of ¢,,, and ¢,, using
inviscid vortex-eddy calculations with their sizes increasing
linearly with distance from the wall. This also enables us to
demonstrate how finite and asymptotically high Re affect the
scaling of these spectra.

The uw-motions are important as they quantify momen-
tum transport across the boundary layer and are central to
theories that describe the mean flow. For example, the orig-
inal theories®>* to derive a logarithmic mean velocity profile
(U* = (1/x)In(z*) + A, where « is the von Kdrmdan constant
and A the geometry dependent intercept) in the inertial sub-
layer involve assuming that —uw" = [ mixing Ur dU™* /dz*. Here
the mixing length /pixing is assumed to scale with distance-
from-the-wall, lyixing = kz, which along with the approxima-
tion that —uw" = 1 in the inertial sublayer leads to the log law
in U. Despite the known limitations of the underlying theory,
the log law has a strong experimental support and an important
consequence of the formulation is that the uw-motions must
follow z-scaling. To date, evidence for this has been unclear.
In the rest of the paper, we will give evidence for this z-scaling
of the uw-motions and also show that ¢,,, follows the z-scaling
precisely between the wall-normal locations where U exhibits
a log behaviour. This confirms that U and —uw are intimately
related to each other via z-scaling.

The obvious difficulties with obtaining an unambiguous z-
scaling for the w spectra and uw cospectra are the requirement
of high Re, which in turn leads to difficulties in reaching posi-
tions close to the wall, not to mention the issues related with
measuring both u and w simultaneously with sufficient accu-
racy and resolution. In the present case, we overcome these
difficulties by carrying out measurements in the High Reynolds
Number Boundary Layer Wind Tunnel (HRNBLWT), which
has a working section of 27 m in length, producing a boundary

layer of approximately 30 cm thickness at the measurement
station of x = 21 m. The facility is complimented with a new
custom-made subminiature X-probe for the simultaneous mea-
surement of u and w to reach close to the wall and still maintain
sufficient resolution.!!-1?

Il. BOUNDARY LAYER MEASUREMENT SYSTEMS
AND TURBULENT STRESS DISTRIBUTIONS

All experiments reported in this paper have been con-
ducted in HRNBLWT,'? located at the University of Mel-
bourne. Measurements are taken at 2, 7, and 18 m downstream
of the tripped inlet with a nominal free-stream velocity (Us)
of 15ms™!. Here, the friction velocity is only a weak function
of the streamwise distance for a fixed free-stream velocity.
Therefore, the same probe can be used to measure at different
streamwise locations (and hence at different Re), while still
ensuring that the sensor size across multiple Re is matched to
within a single viscous unit.

Details of the experimental conditions are given in Table I.
The value for U, and § given in Table I have been obtained
by fitting the mean velocity profile to a composite velocity
formulation.'* The sampling interval At is chosen so that it
is sufficiently low to capture the smallest energetic length
scale!® (i.e., Ar* < 3), while the total sampling time T cor-
responds to approximately 20 000 boundary-layer turnover
times (TUs/6). Figure 1 shows the custom X-probe used,
and its dimensions are 0.4 X 0.4 mm (/, X I;) in the x and z
directions with the wire separation of 0.2 mm (As,) in the y
direction.

Mean flow

direction
y‘i v

FIG. 1. A schematic of x-probe showing sensor lengths / and spacing Asy.
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FIG. 2. Profiles of (a) streamwise variance, (b) wall-normal variance, and (c) Reynolds shear stress at multiple Re. Open and solid symbols correspond to
X-probe and single hot-wire measurements, where blue circle: Re; ~ 2500, red square: Rer = 5000, and green diﬂnond, black triangle: Rer ~ 10000. The

vertical lines denote the observed spread in the statistics during the experiment repeats (4%, 5%, and 7% for ; w2, and uw, respectively). The dashed and
dotted-dashed lines correspond to DN statistics'© at 6;'9 = 1310 and 1990, respectively, while the solid line in (c) denotes the Reynolds shear stress formulation

obtained using a composite mean velocity profile'* at Re; ~ 10000.

A. Turbulent stress results

The streamwise variance (#2), wall-normal variance (w?),
and Reynolds shear stress (—uw) obtained using the X-probe
are presented in Figures 2(a)-2(c), respectively. Also shown
are profiles obtained by Sillero, Jiménez, and Moser!¢ at 6;'9
=1310 and 1900 from DNS, as dashed and dotted-dashed
lines, respectively (the equivalent Reynolds number is
Re; =~ 1700 and 2500 if 6 based on the composite profile is
used instead). At the highest Re, a u? distribution (denoted by
black triangle in Figure 2(a)) obtained using a single-normal
hot-wire with [* ~ 15 (where [ corresponds to the wire length)
is also shown, along with a Reynolds shear stress formula-
tion (solid grey line in Figure 2(c)) from the composite fit of
Chauhan, Monkewitz, and Nagib'* fitted to the measured U
profile.

Comparison of the current Re, ~ 2500 profiles against
DNS at a matched Re shows good agreement, at least for
7zt >150. In the region z* <150, u? from the x-probe is
attenuated due to spatial resolution effects.!”!® A good col-
lapse is observed at Re; =~ 10000 where the single hot-wire
and Xx-probe have comparable spatial resolutions. Further-
more, as evident in Figure 2(a), the u? distribution in the
inertial sublayer displays a logarithmic relation as a func-
tion of z. This behaviour is consistent with the # fluctuations
obeying the z-scaling, as initially predicted by Townsend®
using the attached eddy hypothesis. The logarithmic rela-

tion uz+ =—A;In(z/6) + B; (indicated by the dotted line in
Figure 2(a)), where A; = 1.25 as reported by Marusic et al.'’
and Meneveau and Marusic,”® agrees well with the current
dataset. .
At a fixed z* location, a marginal decrease in w? is
observed in Figure 2(b) with increasing Re in the region
zt < 500; however the differences remain less than 5% of the
measured values and are within the experimental uncertainty.
Furthermore, the near-wall Re trends from the experiments
are not replicated by the profiles from DNS where a nomi-
nal collapse of the w2+ statistics is observed up to z* = 100
instead (cf. dashed and dotted-dashed lines in Figure 2(b)).
Recent near-wall high resolution Particle Image Velocimetry
measurements (with a window size of 5 X 5 viscous length

l.21

scales) performed at Re; ~ 8000 by de Silva ez al.~" indicates
+

that the collapse of w2 in this region extends to high Re. This
suggests that the current dataset suffers from a slight variation

in attenuation or amplification of the w? statistics across Re
(although the spatial resolution is kept nominally constant).
These errors are presumed to be related to calibration errors.
It should be noted that the transition from amplified to attenu-

ated w2 recorded by the X-probe compared to DNS at z+ ~ 30
is characteristic of that observed for this particular X-probe
dimension,'? which is due to finite sensor separation effects.

A good estimate of the —uw profile can be constructed
using the mean momentum equation if the U distribution as a
function of z and a friction factor relation as a function of the
development distance are known.?? Hence, the formulation
at Re; ~ 10000 shown in Figure 2(c) has been obtained in
such a manner. The challenges associated with measuring an
accurate Reynolds shear stress are evident when the direct
measurements of —uw in the literature?> are surveyed, with
discrepancy of up to 15% between the measured and inferred
(from the U profile) values common.

lll. SCALING OF THE SPECTRA AND COSPECTRA
OF TURBULENT MOTIONS

Figures 3 and 4 show the u, w spectra, and uw cospec-
tra from multiple z positions at Re; = 10000, pre-multiplied
by the streamwise wavenumber, k,. Here, A, = 2m/k, corre-
sponds to the wavelength of the energetic modes. Furthermore,
in the pre-multiplied representation, the total area under the
curve when integrated against In k, (or In A,) is equal to the
turbulent stress. It should be noted that Taylor’s frozen tur-
bulence hypothesis®* is utilised here to convert the hot-wire
signals from the temporal to spatial domain. That is, turbu-
lent motions at all length scales are assumed to convect at
a constant velocity that is equal to the local mean veloc-
ity. While this is a common practice for hot-wire measure-
ments, strictly speaking the convention velocity is scale depen-
dent,> meaning some scale-redistribution of energy occurs in
the present spectra. Furthermore, del Alamo and Jiménez?’
observe that while the convection velocity is highly scale
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FIG. 3. Pre-multiplied spectra and cospectra at Re+ =~ 10000 for (a) streamwise velocity, (b) wall-normal velocity, and (c) Reynolds shear stress. The scaling
of uw cospectra with z is observed at selective wall heights, indicated using solid lines; while dashed (z* ~ 150) and dotted (z* ~ 0.26™) lines correspond to
locations outside the self-similar region. The arrow indicates the direction of increasing wall position, with the colour shading in (a)—(c) corresponding to the

same z location.
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FIG. 4. As Figure 3, however the abscissa is now normalised by the wall-height, z. The solid grey lines correspond to spectra from Kunkel and Marusic.

dependent and substantially different from the mean veloc-
ity close to the wall, away from the wall (in the inertial region)
the local mean velocity provides a good approximation at
most energetic scales. Hence, the redistribution of energy in
Figure 3 corresponds to a small fraction of the overall energy
(accounting for ~5% uncertainty in the measured spectra
however, we cannot entirely rule out its influence here. The
abscissa in Figures 3(a)-3(c) is shown normalised in viscous
and ¢ length scales (here the ratio between the two is a constant

=4,

in Figure 4.

25).

0.2

27

since only one Re case is shown). Moreover, the same spectra,
but now with A, normalised by the wall height, z, are shown

In §-scaling (cf. Figure 3), a collapse is only observed for
the u velocity and is limited to very large scales (1, > 50).
Meanwhile, Figure 4(a) shows that the u motions exhibit
z-scaling in the range O(1) < A,/z < O(10). However, the
overlap region where the z and ¢-scaling (cf. Figure 3(a))
are simultaneously satisfied is difficult to observe and

0.3 :

15{@  [kion, : (b) ©
Asymptoti- . [ AN\w e 42021 .
cally high Re S S 0.1 S
=~ 3 | L
Re, ~0(106) 0.5 increa- L r ol
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FIG. 5. The expected distributions of the pre-multiplied spectra and cospectra at (a)—(c) an asymptotic state (Re; ~ O(10%)) and (d)—(f) a limited scale separation
(Rer ~ O(10%)), following the attached eddy hypothesis. Left column ((a) and (d)): streamwise velocity spectra, centre column ((b) and (e)): wall-normal velocity
spectra, right column ((b) and (d)): Reynolds shear stress cospectra; shown at varying z locations within the inertial sublayer.



020712-5 Baidya et al.

consequently, no clear plateau region for k,¢,,, correspond-
ing to a k; ! scaling law, is visible. On the other hand, a good
collapse of the w and uw motions in A, > O(z) regimes is
observed at selective z locations when A, is normalised by z (cf.
Figures 4(b) and 4(c)), an indication that the w and uw con-
taining motions in these regions follow a pure z-scaling. The
dominant modes for the w spectra and uw cospectra occur at
Ay = 2z and 15z, respectively, as indicated in Figures 4(b) and
4(c), and are in good agreement with DNS datasets of Jiménez
and Hoyas,26 albeit at a lower Re.

It should be noted that the analysis presented here is based

on data in the region z* > 150, where the w? and uw statis-
tics are found to be more robust to the calibration errors.
Also shown in Figure 4 are the spectra measured by Kunkel
and Marusic?’ at very high Re (Re; ~ O(10°) in the iner-
tial sublayer (z/6 ~ O(1073)) from the atmospheric surface
layer measurements (shown as solid grey lines). Although a
higher degree of uncertainty is introduced due to the chal-
lenges associated with measuring in the atmospheric surface
layer (which includes estimating U, and thus shifting where
the solid grey lines are located on the ordinate of Figure 4),
similar to our laboratory measurements a good degree of col-
lapse is observed for ¢,,,, and ¢,,, but not for ¢,, across two
decades of Re when the wavelength is normalised by the z
location.

IV. AN EXPLANATION BASED ON THE
PHENOMENOLOGY OF THE ATTACHED EDDY MODEL

In this section, we attempt to identify the physical mecha-
nism that leads to the w and uw containing motions exhibiting
the pure z-scaling more readily at a lower Re than the mixed
scaling for the u velocity. For this purpose, the attached eddy
hypothesis of Townsend> and Perry and Chong® is used to
extract the spectra from an idealised flow field where self-
similarity is strictly enforced. In this frame work, a repre-
sentative eddy that captures the bulk features of the aver-
age contribution from coherent structures with an identical
characteristic height, 7, is used to construct the flow field.
Hence, the flow is modelled as a collection of representative
eddies, where each eddy is scaled accordingly by different
scaling factors and is then randomly distributed in the plane
of the wall. As an illustration, Figures 6(a)-6(d) show a rep-
resentative eddy packet, together with its contribution to the
streamwise velocity, wall-normal velocity, and Reynolds shear
stress obtained from Biot-Savart calculations of the vortex
rods.”® It should be noted that here our aim is not to cap-
ture the instantaneous flow features present in the real flow,
which are unlikely to resemble the representative eddy, but
rather to obtain the bulk statistics contributed by these flow
features.

The attached eddy hypothesis is an inviscid model, and
hence a finite slip velocity is permitted at the wall. The slip
velocity is restricted to the wall-parallel plane, while the wall-
normal velocity (w) at the wall is enforced to be zero, to
preserve the no-penetration condition. This means that in the
vicinity of the wall, the w contribution from the head of the
eddy, where the flow is highly vortical (in the spanwise direc-
tion), diminishes much more rapidly compared to the other

Phys. Fluids 29, 020712 (2017)

two components; and thus the motions become increasingly
restricted to the wall-parallel plane in the near-wall region.
Consequently, as shown by Perry and Marusic?” (and also evi-
dent from Figures 6(b)-6(d)), the u velocity contribution from
an attached eddy extends all the way to the wall while the w and
uw contributions are restricted to z ~ H. Since the total veloc-
ity is a summation of contributions from a range of attached
eddy sizes, the largest energetic scale in u increases relative
to z as the wall is approached, while the largest w and uw
containing motions remain fixed.

A. Attached eddy calculations

Figures 5(a)-5(f) show results from attached eddy calcu-
lations using simple A eddies in a packet configuration (where
multiple eddies align coherently in the streamwise direction)
for the representative eddy (cf. Figure 6(a)). The calcula-
tions involve integrating the spectral contributions from the
representative eddy for each z location,” where the bounds
of integration depend on z. The top row, Figs. 5(a)-5(c),
results correspond to an asymptotic prediction at a very high
Re (Re; ~ O(10%)), while the bottom row, Figs. 5(d)-5(f),
corresponds to predictions at Re close to the experiments.
The wall heights shown in Figures 5(a)-5(c) correspond to
O(107%) < z/6 < O(1073) or O(10%) < z* < O(10°). Hence,
the highest z location shown here coincides with that of the
atmospheric surface layer measurements shown in Figure 4,
while the lowest z location is an order of magnitude closer to
the wall and no experimental data from Kunkel and Marusic?’
exist at this height. It should be noted that the acquisition of the
very long time-series is not possible in atmospheric measure-
ments due to the limited periods of neutral stability. Therefore,
the spectra for large wavelengths (1,/z ~ O(10%)) have a
limited number of ensembles, which leads to an increased
uncertainty in the energetic content measured at these wave-
lengths, and it is not possible to resolve the very long wave-
lengths. The predictions shown in Figures 5(d)-5(f) are for
OW6s*) < 25 < ©0(0.16"), similar to the experimental results
which are shown in Figure 4. Although results from only a
single representative eddy are shown here, we find that the
Re trends exhibited are retained regardless of the representa-
tive eddy shape chosen (including a single A eddy instead of a
packet of A eddies). See the work of Baidya et al.?® for details.

B. Spectral behaviour in the asymptotical limit

Perry, Henbest, and Chong’ show that in the asymptotic
limit the u spectra are expected to follow z- and §-scaling.
Hence, for a given wall height z, all the eddies in the inertial
sublayer with height > O(z) contribute an identical energy
content to the u velocity, leading to an inversely proportional
distribution for ¢,, as a function of the streamwise wavenum-
bers (i.e., puy ~ ki 1. The attached eddy calculations indeed
exhibit a plateau like behaviour for the pre-multiplied u spec-
tra (the k! law appears as a plateau in the pre-multiplied
representation) at Re, ~ O(10°), as shown in Figure 5(a).
Furthermore in the asymptotic limit, the plateau approaches
a value A; and variation in u? as a function of z occurs solely
due to an extension of the k;! plateau region as the wall is
approached.” Therefore, A; also corresponds to the slope of
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FIG. 6. Velocity contributions from a representative eddy. (a) A packet of A hairpin vortices. Corresponding contributions to (b) streamwise velocity, (c) wall-
normal velocity, and (d) Reynolds shear stress. The solid lines denote vortex rods, while dashed lines indicate contours of [(Au™)?|, [(Aw™)?|, |Au* Aw*| = 0.6
(only the negative Au, the positive Aw, and the negative AuAw contours are shown).

the logarithmic behaviour in 2 with respect to z (cf. Figure
2(a)). On the other hand, the w spectra and the uw cospec-
tra at multiple z positions remain identical in terms of A,/z,
as shown in Figures 5(b) and 5(c), since unlike the u spectra
they only exhibit z-scaling. It should be noted that the attached
eddy model used here does not account for fine-scale detached
eddies that exist in the real flow.”’ These additional contribu-
tion from the detached eddies is responsible for deviations
from z-scaling observed in the u and w spectra for the 1, < z
regime, evident in Figures 4(a) and 4(b). Furthermore, the fine-
scale detached eddies are near isotropic?®*° with a minimal
contribution to the Reynolds shear stress. Thus, a good col-
lapse of the uw cospectra in z-scaling still holds for the 1, < z
regime (cf. Figure 4(c)). Here, only a brief description of the
attached eddy hypothesis relevant to the present work is pro-
vided, and the reader is referred to Ref. 9 and Ref. 29 for a full
description.

C. Finite Re effects

One of the requirements for the k;! law in the u spec-
tra is the existence of a range of scales which simultaneously
satisfy z- and ¢-scaling, where the energetic content across
the z positions collapses when A, is normalised by z and &,
respectively.” Hence, even when the entire u contributions are

from eddies that scale with z, such as the case for the attached
eddy calculations shown in Figure 5(d), a plateau region in
kx @, Will not necessarily eventuate. This is due to the inade-
quate scale separation existing between the smallest and largest
length scales at a finite Re, and hence no wall location exists
where z < ¢ such that the u contributions from the eddies
of height ~ (O(6) are universal irrespective of z, while also
simultaneously being sufficiently far away from the wall to
be fully inertial (z > U, /v). Furthermore, in a real boundary
layer velocity contributions from eddies that do not follow the
attached eddy hypothesis do exist (e.g., fine-scale detached
eddies’ and superstructures!-*?), and these additional contri-
butions can lead to further departure from the ideal ;! law
behaviour in the u spectra.

Conversely, the wall-normal velocity and Reynolds shear
stress contributions from the energetic eddies are localised
to z positions close to the characteristic eddy height. This is
because the blocking effect of the wall means that the motions
become increasingly constrained in the wall-parallel plane,
with minimal w (and subsequently modest —uw) contribution,
as the wall is approached. Hence, the w contributions from the
eddies that do not scale with the wall height make up a small

portion of the cumulative w? and —uw, unlike the u contri-

butions to the u? statistic. Therefore, the wall-scaling is more
evident in the w and uw containing motions or the active region
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of the flow. This leads to ¢,,, and ¢,,, that resemble the self-
similar asymptotic state even at a finite Re, as demonstrated
in Figures 5(e) and 5(f). Therefore, the empirical observation
that ¢,,,, and ¢,,,, resemble the asymptotic state, even when the
scale separation present in the flow is insufficient to exhibit the
k7! law in the u spectra, is consistent with the attached eddy
hypothesis.

Figures 5(e) and 5(f) show that at a finite Re, a small
(compared to the u spectra) but nevertheless persistent devia-
tion occurs in the w spectra and uw cospectra with increasing z
locations, and that these deviations are larger in the uw cospec-
tra than in the w spectra. These differences arise from the
no penetration condition that exists at the wall, and hence
in the vicinity of the wall, the attached eddy contributions
follow w2 o (z/H)* and —uw o z/H relationships.’ Here
‘H corresponds to the characteristic height of the eddy. A
good agreement between Figures 4(b), 4(c), 5(e), and 5(f)
suggests that the experimental w spectra and uw cospectra
can be well described in terms of the z-scaling and finite Re
effects. Further, the uw cospectra are harder to converge than
the w spectra due to the highly intermittent nature of instan-
taneous Reynolds shear stress contributions. Hence, we can
expect a larger scatter in the measured uw cospectra com-
pared to the w spectra (for a given sample size and duration),
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which leads to larger deviations existing between multiple uw
cospectra measurements compared to the w spectra. Inspection
of the w spectra and uw cospectra from experiments, shown
in Figures 4(b) and 4(c) (where both have been computed
using an identical routine), indeed indicates that the w spec-
tra are smoother and therefore better converged than the uw
cospectra.

V. STREAMWISE, WALL-NORMAL SPECTROGRAMS,
AND REYNOLDS SHEAR STRESS COSPECTROGRAM

Figure 7 shows pre-multiplied ¢,,, @y, and ¢, plot-
ted against the wall distance and wavelength for various Re.
For the w spectrogram (cf. Figures 7(d)-7(f)), the inertial sub-
layer corresponds to a region where the contours follow the
Ay o« z lines, with the most dominant energy density occur-
ring at A, = 2z (shown as a dotted-dashed line in Figures
7(d)=7(f)). Therefore, unlike the u spectrogram (cf. Figures
7(a)-7(c)) which exhibits two distinct dominant energetic
sites,?!? the w spectrogram is ridge-like with near constant
w contribution across all z locations residing in the inertial
sublayer.

For the uw cospectrogram, two distinct peaks are observed

outside the self-similar region at z* =~ 50, 47 ~ 1000 and
z/6
10° 102 107" 10° 14
e S
1
w 0.8 +§
0~ <
072 Hoe
0.4
107 0.2
0
' 0.5
w spectra 5
10 0.4
Jo (103 ,E
10 & =
0.2 =
10—2 0.1
0
0.3
10
02 .
) +S
0~ e
10 I iy
0.1 "'
1072
0

104

102

10

FIG. 7. Pre-multiplied spectrograms and cospectrogram at (a), (d), and (g): Re; ~ 2500, (b), (), and (h): Rer =~ 5000, and (e), (f), and (i): Re+ ~ 10 000. Top row
((a)—(c)): streamwise velocity spectra, middle row ((d)—(f)): wall-normal velocity spectra, and bottom row ((g)—(i)): Reynolds shear stress cospectra. In (d)—(f),
the circles indicate the location of the peak ky¢,,,, contributions at a particular wall-height, while the dotted-dashed lines correspond to the relationship A, = 2z;
both within the region 150 < z* < 0.156". Symbols + and x denote the location of two dominant energetic sites in the u spectrogram and uw cospectrogram.
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z/6 = 0.25, A1,/6 = 2, and is denoted using symbols + and
X, respectively, in Figures 7(g)—7(i). These peaks are thought
to be associated with the inner and outer peak in the u spec-
trogram (cf. Figures 7(a)-7(c)) and therefore arise due to the
near-wall cycle and very large-scale motions? or superstruc-
tures.?!3? Thus, the peak associated with the large-scale con-
tributions moves outwards with Re in viscous units as shown in
Figures 7(g)-7(i). Furthermore, we find that similar to the u
spectra, both the w spectra and the uw cospectra display Re
invariance for the small-scale motions in the near-wall region
(AF < O10% and z+ < O(10%)) when scaled in viscous units,
and thus it is highly likely that a single physical mechanism
(i.e., the near-wall cycle) is responsible for these energetic u
and w contributions.

A. Limits of the inertial sublayer region

Classically, the inertial sublayer is thought to start at a
fixed viscous unit away from the wall (typically z* ~ 100)
and end at a fraction of the boundary layer thickness>3*
(z/6 ~0.15). Indeed, the available experimental data suggest
that the mean streamwise velocity profile follows a logarithmic
law in the inertial sublayer.'® However, as higher Re data have
become available, the start of the inertial sublayer reported has
also increased, with z* = 600 documented at a very high Re
regime in the Superpipe facility.?

More recently, Wei et al.' have argued that rather than
considering balance of stresses, as is the case in the classi-
cal view, the gradient of stresses is the significant quantities
since they appear in the mean momentum equation (see also
Ref. 2 for a concise review). Subsequently, Wei et al.! showed
that contributions due to the viscous stress gradient are signif-
icant starting from the wall to the z location where the peak
Reynolds shear stress occurs. They also inferred that the start
of the inertial sublayer scales as z* ~ V&*. Furthermore, the
available literature’®37 suggests that the z location where the
maximum —uw occurs moves outwards under viscous scaling
with increasing Re. Following these developments, Marusic
et al.'® simultaneously re-examined the universality of the log

law in both the U and 2 statistics with respect to z, as predicted
by z-scaling using very high Re experiments. This allowed
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them to overcome the difficultly in determining the z limits of
inertial sublayer solely using a U profile, which deviates very
slowly from the log law. Consequently, they find that z* ~ V&+
scaling is consistent with the starting z location where the log
behaviour in U and u? is simultaneously fulfilled.

Here, in order to determine the z limits of the inertial
sublayer, we will utilise the attached eddy results from Sec.
IV, which suggest that a good collapse of the entire ener-
getic w? and uw contents occur in the inertial sublayer when
scaled with z. In other words, the deviations observed from the
asymptotic state serve as a measure to determine the z loca-
tions where self-similarity holds. Although for a synthetic flow
with a perfect z-scaling, the w spectra were shown to exhibit the
best collapse and hence provide the most accurate assessment
of self-similarity, in the real flow an additional contribution
from fine-scale detached eddies that are not accounted for in
the perfect z-scaling model exists (cf. Figures 4(b) and 5(b))
as illustrated in Figure 8. However, these fine-scale detached
eddies are near isotropic,29 and hence their contribution to the
Reynolds shear stress is minimal. Thus, for the uw cospec-
tra, the entire energy-containing range exhibits the z-scaling
in the inertial sublayer, making it the most appropriate quan-
tity (out of all the turbulent stresses) to provide an assessment
of self-similarity.

1. Assessment of the deviations from self-similarity

In order to quantify deviations from the self-similarity, we
will therefore utilise the quantity A k,¢,,,, which is defined as

Ak (2, Ax) = ke i (2, Ax) — ki (Zrets Ax Zret/2), (1)

where zp¢ is located at the geometric centre of the self-
similar region. In other words, A k,¢,,, corresponds to a dif-
ference between the measured uw cospectra (cf. Figure 9(a))
and a uw cospectrogram where the wall self-similarity (i.e.,
z-scaling) is satisfied across the entire boundary layer (cf.
Figure 9(b) and the term ki@, (Zref, Ax Zrer/2) in (1)), as
illustrated in Figure 9. This procedure iteratively determines
the appropriate limits for the start (z;) and end (z,) of the

) 0?2) 0(16) . . /1x
| | oo oci00)
z-scaling o-scaling
A i A )
f \
roess |
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— -
fine-scale detached overlap region
eddy contribution z—sc:illing
A
1 Y )}
Pruw T —
z-scaling
r A \
Puw e ——

FIG. 8. A summary of various scaling for turbulent stress spectra and cospectra in the inertial sublayer at high Re. The overlap region in the u spectra leads to a

—+
u? ~—AyIn(z/8) + By behaviour.
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FIG. 9. Assessment of the self-similarity using deviation from a perfect z-scaling for Re+ ~ 10000. (a) uw cospectra from the experiments, (b) a reference uw

cospectrum satisfying a perfect z-scaling, and (c) differences between (a) and (b).

inertial sublayer (and hence zyf, since zref=y/ZiZ,) such that the
uw cospectra within the limits z; < z < z, satisfy the
Aky¢uw(z, x) = 0 condition. Furthermore, regardless of the
initial z; and z, guesses, the procedure is observed to converge
to the same z limits.

Although the quantity A k. ¢,,, shown in Figure 9(c) is suf-
ficient for an assessment of self-similarity, some of A k; ¢, =0
regions in the figure are due to near zero uw content at a
particular z and A, location (e.g., z* = 10* and A} = 10?).
Hence, in Figures 10(a)-10(c), the contour maps of —A k. ¢y,
have been weighted by the —k,¢,,, value to enhance the dif-
ferences, Ak, ¢,,,, where the uw contribution is dominant. In
other words, uw cospectra as functions of z and A, (cf. Figures
7(g)-7(1)) are used to blend the conventional one dimensional
colour map (such as the one used in Figure 9(c)) from the origi-
nal to white depending on how the —k, ¢,,, value changes from
the maximum value to zero to create a two dimensional colour
map. For example, at (z+, 17) = (50, 10%) and (10, 10?), the
pre-multiplied Reynolds shear stress cospectra are near the
maximum and zero, respectively, and therefore while the first
location retains the non-modified colour, the second location
is near white.

The markers 1-3 and A-B in Figures 10(a)-10(c) denote
regions of low and high Reynolds shear stress compared to
the self-similar asymptotic state, respectively. Also shown are
contours corresponding to —Ak}¢F = —0.035 and 0.035 as
dotted-dashed and dotted lines, used here as a criteria to deter-
mine the z-limits of the inertial sublayer. Here, the threshold
selected corresponds to the estimated uncertainty in the mea-
sured spectrogram, which is equal to the maximum deviation
from a polynomial curve with respect to log 1, used to fit the
measured spectra. Furthermore, although the coefficients (i.e.,
3 and 0.15, corresponding to the vertical dashed lines in Figure
10) are dependent on the threshold used, the z+ ~ Vé* and 6*
scaling for the start and end of the self-similar region are,
respectively, retained.

The regions 1 and 2 correspond to locations where —uw
is no longer constant, leading to a negative —A k,¢,,,. These
regions remain fixed in viscous and outer units, respectively,
as shown in Figures 10(a)-10(c). Meanwhile, the regions of
positive —A kx¢y,,», A and B, are associated with the peak in
the uw cospectra and hence they also scale with viscous and
outer scaling, correspondingly. Finally, at an increased Re,
an additional region with insufficient Reynolds shear stress
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FIG. 10. Deviations in the weighted Reynolds shear stress cospectra (—A k;¢;’y‘,|weighted) from the geometric centre of the inertial sublayer at (a) Re ~ 2500,
(b) Re+ ~ 5000, and (c) Re; ~ 10000. The dotted-dashed and dotted lines denote contour levels at —0.035 and 0.035, while the vertical dashed lines indicate

locations z* ~ 3V6* and 0.156+.
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contribution (denoted by 3) compared to the self-similarity
state emerges below the inertial sublayer, leading to z* ~ V&*
scaling for the start of the inertial sublayer. The relatively
large streamwise length scales associated with the region 3
compared to z and the fact that the corresponding w spectra
for the region exhibit a near perfect z-scaling (cf. 1, > 10z
regime in Figure 4(b)) suggest that this region arises from the
direct influence of the large §-scaled features in the u spectra
which become increasingly prominent at high Re. Interest-
ingly, region 3 is also related to the d-scaled vortex-stretching
motions.*® Furthermore it should be noted that the attached
eddy hypothesis® predicts a —uw' = 1 — (%) € distribution,
with the constant € <« 1, for the Reynolds shear stress in the
inertial sublayer. This means that the uw cospectraincreasingly
deviate from the perfect z-scaling with increasing z, even in
the inertial sublayer, and this may be the reason why the region
2 start to encroach the z/6 = 0.15 line with increasing Re as
observed in Figure 10(c). However, with an increase in Re,
a higher portion of z locations satisfies —uw' =~ 1, since the
start of the inertial region approaches zero in the z/6 normal-
isation. We also find that, in the inertial sublayer, the integral
—Jo> Akf¢;, dInk; decreases with increasing z, which is
consistent with the mean momentum balance' and the attached
eddy hypothesis.®

From Figures 10(a)-10(c), it is evident that although
the uw cospectra depart from self-similarity observed in the
regions z* < 3V6+; the dominant energetic mode in the w
spectra still exhibit the A, o z relation much closer to the
wall. In fact, the wall location where the dominant w mode
starts obeying z-scaling is fixed in viscous units (z* ~ 100)
for all three Re cases examined here as shown in Figures
7(d)=7(f). Thus, although self-similarity is only retained for
3V6* < z* < 0.156%, the observation suggests that the eddies
which are responsible for the turbulent stresses begin to exhibit
scaling with the distance from the wall at a fixed z location in
viscous units, as initially postulated by Perry, Henbest, and
Chong.9 However, below z+ < 3o+ , the eddies become dis-
torted and depart from self-similarity since the viscous force
remains a leading order contribution in the mean momentum
equation in this region.

VI. SUMMARY AND CONCLUSIONS

We demonstrate that in the inertial sublayer, the u velocity
scales both with z and ¢, therefore exhibiting a mixed scal-
ing. Meanwhile, a major fraction (> 80%) of w? containing
motions scale with respect to z, with the rest of contribution
occurring from near isotropic fine-scale detached eddies. Fur-
thermore, since the near isotropic fine-scales and very large
o-scaled motions have negligible contribution to the Reynolds
shear stress, a pure z-scaling is observed in the uw cospectra
across the range of energetic scales. These scaling laws are
also illustrated in Figure 8.

We find that the w spectra and the uw cospectra both fol-
low the self-similar asymptotic state more closely compared to
the u spectra at the same scale separation. This is because the
scale separation between z and ¢ affects the behaviour of the u
spectra much more severely than for ¢,,, and ¢,,,. Hence, the
flow consisting of self-similar eddies do not necessarily need
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to exhibit the asymptotical k; ! prediction in the u spectra at
a finite Re, and this is demonstrated in this paper through the
use of the attached eddy framework.>-°

The experimental data presented adhere to the trends pre-
dicted using the attached eddy hypothesis at limited scale sepa-
ration, namely, no plateau region in pre-multiplied u spectra but
collapse of w spectra and uw cospectra when the wavelength is
normalised by the wall height at selective z locations. We also
show that the structures with dominant w contributions exhibit
z-scaling, starting from z* ~ ((100) and ending at O(0.16%).
However, the self-similar region (a near perfect z-scaling of uw
cospectra) is constrained to 3V6* < z* < 0.156"; and thus
the start of the inertial sublayer is found to change in viscous
units, in contrast to the classical view. The z* ~ o+ scaling
for the start of the inertial sublayer is due to the viscous forces
becoming a leading order contribution in the mean momen-
tum balance below this region, which leads to the distortion of
eddies with height < 3Vo+ (in viscous units), and hence the
departure from self-similarity.
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