The University of Melbourne
Browse

microbiome_strain_species_nanopore_quantification_tarfiles

Published on by Christopher Woodruff

a.  Code repository is  https://github.com/cjwoodruff50/Nanopore_WEHI_cjw  

     A description of the code pipeline is provided there. Item b. below describes key data files.

 

b.  1. Input for database generation is in   .../papercheck/workDB1, including the 

       sub-directories 16S and 23S which contain the fasta files of each strains' rRNA 

       genes. The following tarred files hold the relevant data:-

           workDB1_16S_fasta_03022024.tar

           workDB1_23S_fasta_03022024.tar

           workDB1_16S_23S_blastn_databases.tar


    2. Input for dataset generation is the split_zymo_hmw_r104_* files  (aa to cx)

       These have been tarred into 

           split_zymo_hmw_r104_aa_cx.tar

           

       Processing of these files by extract_Seraika_16S23S_v10.R  generates the primary 

       16s and 23S datasets.

       

       Separately for both 16S and 23S 

          

    3. Input for RAD denoising is 10 fastq files. The primary datasets are in 

       .../papercheck/in   while the sub-sampled datasets are in .../papercheck

          amplicon_16S_RADfastqinput_subsampledDatasets_05022024.tar    and

          amplicon_23S_RADfastqinput_subsampledDatasets_05022024.tar

       hold the sub-sampled datasets' fastq files.

   

    4. Input for ASV alignments, and profiling based on these, RAD outputs and the 

       reference databases.  These are held in 

          amplicon_16S_RADfastqoutput_05022024.tar

          amplicon_23S_RADfastqoutput_05022024.tar

          denoised_amplicon_D6322_16S23S_05022024_10datasets_ASVs_fasta.tar

       The reference databases (see i. above)  are also required, of course.

       

    Necessary data for running the denoising and profiling consists of 

           

       i.    workDB1_16S_23S_blastn_databases.tar

      ii.    amplicon_D6322_16S_trimmed_05022024.fastq

     iii.    amplicon_D6322_23S_trimmed_05022024.fastq

           

      iv.    amplicon_16S_RADfastqinput_subsampledDatasets_05022024.tar

       v.    amplicon_23S_RADfastqinput_subsampledDatasets_05022024.tar

           

      vi.    denoised_amplicon_D6322_16S23S_05022024_10datasets_ASVs_fasta.tar

     vii.    amplicon_16S_RADfastqoutput_05022024.tar

    viii.    amplicon_23S_RADfastqoutput_05022024.tar

      ix.    RAD_amplicon_16S23S_05022024_10datasets_text_output_06022024.tar

    

    Items i. to iii. allow RAD denoising of the primary 16S and 23S datasets.

    Items iv. and v., together with item i. allow RAD denoising of the sub-sampled 

             datasets

    Items vi., vii., viii. and ix. allow identification and quantification of the sample 

             microbiota for all datasets.

             

             

  

Cite items from this project

DataCite
3 Biotech
3D Printing in Medicine
3D Research
3D-Printed Materials and Systems
4OR
AAPG Bulletin
AAPS Open
AAPS PharmSciTech
Abhandlungen aus dem Mathematischen Seminar der Universität Hamburg
ABI Technik (German)
Academic Medicine
Academic Pediatrics
Academic Psychiatry
Academic Questions
Academy of Management Discoveries
Academy of Management Journal
Academy of Management Learning and Education
Academy of Management Perspectives
Academy of Management Proceedings
Academy of Management Review

cite all items

Share

email